
Natural System Functions
This document describes various Natural "built-in" functions for use in certain statements. 

The following topics are covered: 

Using Natural System Functions 
Alphabetical List of Natural System Functions 
Mathematical Functions 
POS - Field Identification Function 
RET - Return Code Function 
SORTKEY - Sort-Key Function

Using Natural System Functions
The Natural system functions listed below may be specified in a MOVE, COMPUTE, DISPLAY, PRINT or WRITE
statement that is used within any of the following statement blocks: 

AT BREAK, 
AT END OF DATA, 
AT END OF PAGE, 

that is, for all FIND, READ, HISTOGRAM, SORT or READ WORK FILE processing loops. 

If a system function is used within an AT END OF PAGE statement, the corresponding DISPLAY statement must
include the GIVE SYSTEM FUNCTIONS clause. 

Records rejected by a WHERE clause are not evaluated by a system function. 

If system functions are evaluated from database fields which originated from different levels of processing loops
initiated with a FIND, READ, HISTOGRAM or SORT statement, the values are always processed according to their
position in the loop hierarchy. For example, values for an outer loop will only be processed when new data values
have been obtained for that loop. 

If system functions are evaluated from user-defined variables, the processing is dependent on the position in the loop
hierarchy where the user-defined variable was introduced in reporting mode. If the user-defined variable is defined
before any processing loop is initiated, it will be evaluated for system functions in the loop where the AT BREAK,
AT END OF DATA or AT END OF PAGE statement is defined. If a user-defined variable is introduced within a
processing loop it will be processed the same as a database field from that processing. 

For selective referencing of system function evaluation for user-defined variables it is recommended to specify a
loop reference with the user-defined variable to indicate in which loop the value is to be processed. The loop
reference may be specified as a statement label or source code line number. 

1Copyright Software AG 2001

Natural System FunctionsNatural System Functions



System Functions in SORT GIVE FUNCTIONS Statement

System functions may also be referenced when they have been evaluated in a GIVE FUNCTIONS clause of a SORT 
statement.

For a reference to a system function evaluated with a SORT GIVE FUNCTIONS statement, the name of the system
function must be prefixed with an asterisk (*). 

Arithmetic Overflows in AVER, NAVER, SUM or TOTAL

Fields to which the system functions AVER, NAVER, SUM and TOTAL are to be applied must be long enough
(either by default or user-specified) to hold any overflow digits. If any arithmetic overflow occurs, an error message
will be issued.

Normally, the length is the same as that of the field to which the system function is applied; if this is not long
enough, use the NL parameter to increase the output length as follows:

SUM(field)(NL=nn)

This will not only increase the output length but also causes the field to be made longer internally. 

Statement Referencing (r)

Statement referencing is also available for system functions. 

By using a statement label or the source-code line number (r) you can determine in which processing loop the system
function is to be evaluated for the specified field. 

Copyright Software AG 20012

Natural System FunctionsSystem Functions in SORT GIVE FUNCTIONS Statement



Alphabetical List of Natural System Functions
AVER(r)(field) 
COUNT(r)(field) 
MAX(r)(field)  
MIN(r)(field)  
NAVER(r)(field) 
NCOUNT(r)(field) 
NMIN(r)(field)  
OLD(r)(field) 
SUM(r)(field) 
TOTAL(r)(field) 

AVER (r)(field)

Format/length: Same as field. 
Exception: for a field of format N, AVER(field) will be of format P (with the same length as the
field). 

This system function contains the average of all values encountered for the field specified with AVER. AVER is
updated when the condition under which AVER was requested is true. 

COUNT(r)(field)

Format/length: P7 

COUNT is incremented by 1 on each pass through the processing loop in which it is located. COUNT is incremented
regardless of the value of the field specified with COUNT. 

MAX (r)(field)

Format/length: Same as field. 

This system function contains the maximum value encountered for the field specified with MAX. MAX is updated
(if appropriate) each time the processing loop in which it is contained is executed. 

MIN (r)(field)

Format/length: Same as field. 

This system function contains the minimum value encountered for the field specified with MIN. MIN is updated (if
appropriate) each time the processing loop in which it is located is executed. 

NAVER (r)(field)

Format/length: Same as field. 
Exception: for a field of format N, NAVER(field) will be of format P (with the same length as the
field). 

3Copyright Software AG 2001

Alphabetical List of Natural System FunctionsNatural System Functions



This system function contains the average of all values - excluding null values - encountered for the field specified
with NAVER. NAVER is updated when the condition under which NAVER was requested is true. 

NCOUNT(r)(field)

Format/length: P7 

NCOUNT is incremented by 1 on each pass through the processing loop in which it is located unless the value of the
field specified with NCOUNT is a null value. 

NMIN (r)(field)

Format/length:Same as field. 

This system function contains the minimum value encountered - excluding null values - for the field specified with
NMIN. NMIN is updated (if appropriate) each time the processing loop in which it is located is executed.

OLD (r)(field)

Format/length: Same as field. 

This system function contains the value which the field specified with OLD contained prior to a control break as
specified in an AT BREAK condition, or prior to the end-of-page or end-of-data condition.

SUM(r)(field)

Format/length: Same as field. 
Exception: for a field of format N, SUM(field) will be of format P (with the same length as the
field). 

This system function contains the sum of all values encountered for the field specified with SUM. SUM is updated
each time the loop in which it is located is executed. When SUM is used following an AT BREAK condition, it is
reset after each value break. Only values that occur between breaks are added.

TOTAL (r)(field)

Format/length: Same as field. 
Exception: for a field of format N, TOTAL(field) will be of format P (with the same length as the
field). 

This system function contains the sum of all values encountered for the field specified with TOTAL in all open
processing loops in which TOTAL is located. 

System Functions Example 1:

 /* EXAMPLE ’ATBEX3:’ AT BREAK WITH NATURAL SYSTEM FUNCTIONS              
   /* *******************************************************************   
   DEFINE DATA LOCAL                                                        
   1 EMPLOY-VIEW VIEW OF EMPLOYEES                                          
     2 NAME                                                                 
     2 CITY                                                                 
     2 SALARY (1)                                                           
     2 CURR-CODE (1)                                                        

Copyright Software AG 20014

Natural System FunctionsNCOUNT(r)(field)



   END-DEFINE                                                               
   /* *******************************************************************   
   LIMIT 3                                                                  
   READ EMPLOY-VIEW LOGICAL BY CITY = ’SALT LAKE CITY’                      
     DISPLAY NOTITLE CITY NAME ’SALARY’ SALARY(1) ’CURRENCY’ CURR-CODE(1)   
     AT BREAK OF CITY 
        WRITE /  OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X) 
         31T ’   MINIMUM:’ MIN(SALARY(1))   CURR-CODE(1) / 
         31T ’   AVERAGE:’ AVER(SALARY(1))  CURR-CODE(1) / 
         31T ’   MAXIMUM:’ MAX(SALARY(1))   CURR-CODE(1) / 
         31T ’       SUM:’ SUM(SALARY(1))   CURR-CODE(1) / 
         35T COUNT(SALARY(1)) ’RECORDS FOUND’ /           
     END-BREAK 
     AT END OF DATA                                                         
        WRITE 22T ’TOTAL (ALL RECORDS):’                                   
           T*SALARY TOTAL(SALARY(1))   CURR-CODE(1)                          
     END-ENDDATA                                                           
   END-READ                                                                 
   /* *******************************************************************   
   END

          CITY                 NAME           SALARY   CURRENCY                 
  -------------------- -------------------- ---------- --------                 
                                                                                
  SALT LAKE CITY       ANDERSON                  50000 USD                      
  SALT LAKE CITY       SAMUELSON                 24000 USD                      
                                                                                
  S A L T   L A K E   C I T Y      MINIMUM:      24000 USD                      
                                   AVERAGE:      37000 USD                      
                                   MAXIMUM:      50000 USD                      
                                       SUM:      74000 USD                      
                                           2 RECORDS FOUND                      
                                                                                
  SAN DIEGO            GEE                       60000 USD                      
                                                                                
  S A N   D I E G O                MINIMUM:      60000 USD                      
                                   AVERAGE:      60000 USD                      
                                   MAXIMUM:      60000 USD                      
                                       SUM:      60000 USD                      
                                           1 RECORDS FOUND                      
                                                                                
                       TOTAL (ALL RECORDS):     134000 USD

System Functions Example 2:

 /* EXAMPLE ’ATBEX4’: AT BREAK USING NATURAL SYSTEM FUNCTIONS             
   /**************************************************************          
   DEFINE DATA LOCAL                                                        
     1 EMPLOY-VIEW VIEW OF EMPLOYEES                                        
       2 NAME                                                               
       2 CITY                                                               
       2 SALARY (2)                                                         
     1 #INC-SALARY (P11)                                                    
   END-DEFINE                                                               
   /**************************************************************          
   LIMIT 4                                                                  
   EMPLOOP. READ EMPLOY-VIEW BY CITY STARTING FROM ’ALBU’                   
             COMPUTE #INC-SALARY = SALARY (1) + SALARY (2)                  
             DISPLAY NAME CITY SALARY (1:2) ’CUMULATIVE’ #INC-SALARY        
             SKIP  
             AT BREAK CITY 

5Copyright Software AG 2001

TOTAL(r)(field)Natural System Functions



                WRITE NOTITLE 
                  ’AVERAGE:’ T*SALARY (1) AVER(SALARY(1))  / 
                  ’AVERAGE CUMULATIVE:’ T*#INC-SALARY 
                                        AVER(EMPLOOP.) (#INC-SALARY)  
             END-BREAK 
            END-READ                                                        
   /**************************************************************          
   END

          NAME                 CITY           ANNUAL    CUMULATIVE            
                                              SALARY                          
  -------------------- -------------------- ---------- ------------           
                                                                              
  HAMMOND              ALBUQUERQUE               22000        42200           
                                                 20200                        
                                                                              
  ROLLING              ALBUQUERQUE               34000        65200           
                                                 31200                        
                                                                              
  FREEMAN              ALBUQUERQUE               34000        65200           
                                                 31200                        
                                                                              
  LINCOLN              ALBUQUERQUE               41000        78700           
                                                 37700                        
                                                                              
  AVERAGE:                                       32750                        
  AVERAGE CUMULATIVE:                                         62825

System Functions Example 3:

 /* EXAMPLE ’AEDEX1S’: AT END OF DATA (STRUCTURED MODE)                   
   DEFINE DATA LOCAL                                                        
     1 EMPLOY-VIEW VIEW OF EMPLOYEES                                        
       2 PERSONNEL-ID                                                       
       2 NAME                                                               
       2 FIRST-NAME                                                         
       2 SALARY (1)                                                         
       2 CURR-CODE (1)                                                      
   END-DEFINE                                                               
   /*  
   LIMIT 5                                                                  
   EMP. FIND EMPLOY-VIEW WITH CITY = ’STUTTGART’                            
         IF NO RECORDS FOUND                                                
           ENTER                                                            
         END-NOREC                                                          
         DISPLAY PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)      
   /*********************************************************************   
         AT END OF DATA  
           IF *COUNTER (EMP.) = 0 
              WRITE ’NO RECORDS FOUND’ 
              ESCAPE BOTTOM 
           END-IF 
           WRITE NOTITLE / ’SALARY STATISTICS:’ 
                         / 7X ’MAXIMUM:’ MAX(SALARY(1))  CURR-CODE (1) 
                         / 7X ’MINIMUM:’ MIN(SALARY(1))  CURR-CODE (1) 
                         / 7X ’AVERAGE:’ AVER(SALARY(1))  CURR-CODE (1) 
         END-ENDDATA 
   /*********************************************************************   
   END-FIND                                                           
   END

Copyright Software AG 20016

Natural System FunctionsTOTAL(r)(field)



  PERSONNEL         NAME              FIRST-NAME        ANNUAL   CURRENCY  
     ID                                                 SALARY     CODE    
  --------- -------------------- -------------------- ---------- -------- 
                                                                              
  11100328  BERGHAUS             ROSE                      70800    €     
  11100329  BARTHEL              PETER                     42000    €      
  11300313  AECKERLE             SUSANNE                   55200    €      
  11300316  KANTE                GABRIELE                  61200    €      
  11500304  KLUGE                ELKE                      49200    €      
                                                                              
  SALARY STATISTICS:                                                          
         MAXIMUM:      70800    €                                          
         MINIMUM:      42000    €                                          
         AVERAGE:      55680    €

System Functions Example 4:

 /* EXAMPLE ’AEPEX1S’: AT END OF PAGE (STRUCTURED MODE)                   
   /*********************************************************************   
   DEFINE DATA LOCAL                                                        
   1 EMPLOY-VIEW VIEW OF EMPLOYEES                                          
     2 PERSONNEL-ID                                                         
     2 NAME                                                                 
     2 JOB-TITLE                                                            
     2 SALARY (1)                                                           
     2 CURR-CODE (1)                                                        
   END-DEFINE                                                               
   /*********************************************************************   
   FORMAT PS=10                                                             
   LIMIT 10                                                                 
   READ EMPLOY-VIEW BY PERSONNEL-ID FROM ’20017000’                         
     DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS                                  
             NAME JOB-TITLE ’SALARY’ SALARY(1) CURR-CODE (1)                
   /*********************************************************************   
     AT END OF PAGE 
       WRITE / 28T ’AVERAGE SALARY: ...’ AVER(SALARY(1))  CURR-CODE (1) 
     END-ENDPAGE 
   /*********************************************************************   
   END-READ                                                                 
   /*********************************************************************   
   END

          NAME                  CURRENT            SALARY   CURRENCY          
                               POSITION                       CODE            
  -------------------- ------------------------- ---------- --------          
                                                                              
  CREMER               ANALYST                        34000 USD               
  MARKUSH              TRAINEE                        22000 USD               
  GEE                  MANAGER                        39500 USD               
  KUNEY                DBA                            40200 USD               
  NEEDHAM              PROGRAMMER                     32500 USD               
  JACKSON              PROGRAMMER                     33000 USD               
                                                                              
                             AVERAGE SALARY: ...      33533 USD

 

7Copyright Software AG 2001

TOTAL(r)(field)Natural System Functions



Mathematical Functions
The following mathematical functions are supported in arithmetic processing statements (ADD, COMPUTE, 
DIVIDE, MULTIPLY , SUBTRACT) and in logical condition criteria: 

Function Format/Length Explanation 

ABS(field) same as field Absolute value of field. 

ATN (field) F8 (*) Arc tangent of field. 

COS(field) F8 (*) Cosine of field. 
If the value of the field is equal to or greater than 1017, COS(field) will be "1". 

EXP(field) F8 (*) Exponential of field. 

FRAC(field) same as field Fractional part of field. 

INT (field) same as field Integer part of field. 

LOG (field) F8 (*) Natural logarithm of field. 

SGN(field) same as field Sign of field (-1, 0, +1). 

SIN(field) F8 (*) Sine of field. 
If the value of the field is equal to or greater than 1017, SIN(field) will be "0". 

SQRT(field) (*) (**) Square root of field. 
A negative value in the argument field will be treated as positive. On mainframe
computers, the maximum number of digits before the decimal point of the
argument is 22. 

TAN (field) F8 (*) Tangent of field. 
If the value of the field is equal to or greater than 1017, TAN(field) will be "0". 

VAL (field) same as 
target field 

Extract numeric value from an alphanumeric field. The content of the field must be
the character representation of a numeric value. Leading or trailing blanks in the 
field will be ignored; decimal point and leading sign character will be processed. 
If the target field is not long enough, decimal digits will be truncated (see also 
Field Truncation and Field Rounding). 

* On all platforms, except on mainframe computers, these functions are evaluated as follows: The argument is
converted to format/length F8 and then passed to the operating system for computation; the result returned by
the operating system has format/length F8, which is then converted to the target format. 

** On mainframe computers, the following applies:
If  field has format/length F4, format/length of SQRT(field) will be F4; 
if field has format/length F8 or I, format/length of SQRT(field) will be F8; 
if field has format N or P, format/length of SQRT(field) will be Nn.7 or Pn.7 respectively (where n is
automatically calculated to be large enough). 

A field to be used with a mathematical function - except VAL - may be a constant or a scalar; its format must be
numeric, packed numeric, integer, or floating point (N, P, I or F). 

A field to be used with the VAL function may be a constant, a scalar, or an array; its format must be alphanumeric. 

Copyright Software AG 20018

Natural System FunctionsMathematical Functions



Mathematical Functions Example:

 /* EXAMPLE ’MATHEX’: MATHEMATICAL FUNCTIONS                              
   /***************************************************************         
   DEFINE DATA LOCAL                                                        
   1 #A (N2.1) INIT <10>                                                    
   1 #B (N2.1) INIT <-6.3>                                                  
   1 #C (N2.1) INIT <0>                                                     
   1 #LOGA  (N2.6)                                                          
   1 #SQRTA (N2.6)                                                          
   1 #TANA  (N2.6)                                                          
   1 #ABS (N2.1)                                                            
   1 #FRAC (N2.1)                                                           
   1 #INT (N2.1)                                                            
   1 #SGN (N1)                                                              
   END-DEFINE                                                               
   /***************************************************************         
   COMPUTE #LOGA  = LOG(#A)  
   WRITE NOTITLE ’=’ #A 5X ’LOG’ 40T #LOGA                                
   /***************************************************************         
   COMPUTE #SQRTA = SQRT(#A)  
   WRITE         ’=’ #A 5X ’SQUARE ROOT’ 40T #SQRTA                       
   /***************************************************************         
   COMPUTE #TANA  = TAN(#A)  
   WRITE         ’=’  #A 5X ’TANGENT’ 40T #TANA                           
   /***************************************************************         
   COMPUTE #ABS   = ABS(#B)  
   WRITE     //  ’=’  #B 5X ’ABSOLUTE’ 40T #ABS                           
   /***************************************************************         
   COMPUTE #FRAC  = FRAC(#B)  
   WRITE         ’=’  #B 5X ’FRACTIONAL’ 40T #FRAC                        
   /***************************************************************         
   COMPUTE #INT   = INT(#B)  
   WRITE         ’=’  #B 5X ’INTEGER’ 40T #INT                            
   /***************************************************************         
   COMPUTE #SGN   =  SGN(#A)  
   WRITE      // ’=’  #A 5X ’SIGN’     40T #SGN                           
   /***************************************************************         
   COMPUTE #SGN   = SGN(#B)  
   WRITE         ’=’  #B 5X ’SIGN’     40T #SGN                           
   /***************************************************************         
   COMPUTE #SGN   = SGN(#C)  
   WRITE         ’=’  #C 5X ’SIGN’     40T #SGN                           
   /***************************************************************         
   END

  #A:  10.0     LOG                        2.302585
  #A:  10.0     SQUARE ROOT                3.162277
  #A:  10.0     TANGENT                    0.648360
  
  
  #B:  -6.3     ABSOLUTE                   6.3
  #B:  -6.3     FRACTIONAL                -0.3
  #B:  -6.3     INTEGER                   -6.0
  
  
  #A:  10.0     SIGN                      1
  #B:  -6.3     SIGN                     -1
  #C:   0.0     SIGN                      0

9Copyright Software AG 2001

Mathematical FunctionsNatural System Functions



 

Copyright Software AG 200110

Natural System FunctionsMathematical Functions



POS - Field Identification Function

Format/length: I4 

The system function POS(field-name) contains the internal identification of the field whose name is specified with
the system function. 

POS(field-name) may be used to identify a specific field, regardless of its position in a map. This means that the
sequence and number of fields in a map may be changed, but POS(field-name) will still uniquely identify the same
field. With this, for example, you need only a single REINPUT statement to make the field to be MARKed
dependent on the program logic. 

Example: 

   DECIDE ON FIRST VALUE OF ... 
      VALUE ... 
         COMPUTE #FIELDX = POS(FIELD1) 
      VALUE ... 
         COMPUTE #FIELDX = POS(FIELD2) 
      ... 
   END-DECIDE 
   ... 
   REINPUT ... MARK #FIELDX

If the field specified with POS is an array, a specific occurrence must be specified; for example, "POS(FIELDX(5))".
POS cannot be applied to an array range. 

POS and *CURS-FIELD

The system function POS(field-name) may be used in conjunction with the Natural system variable *CURS-FIELD
to make the execution of certain functions dependent on which field the cursor is currently positioned in. 

*CURS-FIELD contains the internal identification of the field in which the cursor is currently positioned; it cannot
be used by itself, but only in conjunction with POS(field-name). You may use them to check if the cursor is currently
positioned in a specific field and have processing performed depending on that condition. 

Example: 

   IF *CURS-FIELD = POS(FIELDX) 
      MOVE *CURS-FIELD TO #FIELDY 
   END-IF 
   ... 
   REINPUT ... MARK #FIELDY

Note: 
The values of *CURS-FIELD and POS(field-name) serve only as internal identifications of the fields and cannot be
used for arithmetic operations.

Note for Natural RPC:
If *CURS-FIELD and POS(field-name) refer to a context variable, the resulting information can only be used within
the same conversation.

11Copyright Software AG 2001

POS - Field Identification FunctionNatural System Functions



RET - Return Code Function

Format/length: I4 

The system function RET(program-name) may be used to receive the return code from a non-Natural program called
via a CALL statement.

RET(program-name) can be used in an IF statement and within the arithmetic statements ADD, COMPUTE, 
DIVIDE, MULTIPLY  and SUBTRACT.

Example: 

   DEFINE DATA LOCAL 
   1 #RETURN (I4) 
   ... 
   END-DEFINE 
   ... 
   ... 
   CALL ’PROG1’ 
   IF RET(’PROG1’) > #RETURN 
      WRITE ’ERROR OCCURRED IN PROGRAM 1’ 
   END-IF 
   ...

 

Copyright Software AG 200112

Natural System FunctionsRET - Return Code Function



SORTKEY - Sort-Key Function

Format/length: A253 

Several national languages contain characters (or combinations of characters) which are not sorted in the correct
alphabetical order by a sort program or database system, because the sequence of the characters in the character set
used by the computer does not always correspond to the alphabetical order of the characters.

For example, the Spanish letter "CH" would be treated by a sort program or database system as two separate letters
and sorted between "CG" and "CI" - although in the Spanish alphabet it is in fact a letter in its own right and belongs
between "C" and "D".

Or it may be that, contrary to your requirements, lower-case and upper-case letters are not treated equally in a sort
sequence, that letters are sorted after numbers (although you may wish them to be sorted before numbers), or that
special characters (for example, hyphens in double names) lead to an undesired sort sequence.

In such cases, you can use the system function SORTKEY(character-string) to convert "incorrectly sorted"
characters (or combinations of characters) into other characters (or combinations of characters) that are "correctly
sorted" alphabetically by the sort program or database system.

The values computed by SORTKEY are then only used as sort criterion, while the original values are used for the
interaction with the end-user.

You can use the SORTKEY function as an arithmetic operand in a COMPUTE statement and in a logical condition.

As character-string you can specify an alphanumeric constant or variable, or a single occurrence of an alphanumeric 
array.

When you specify the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked - nn
being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write this user exit in any programming language that provides a standard CALL interface. The 
character-string specified with SORTKEY will be passed to the user exit. The user exit has to be programmed so
that it converts any "incorrectly sorted" characters in this string into corresponding "correctly sorted" characters. The
converted character string is then used in the Natural program for further processing. 

For details on the user exit, see your Natural Operations documentation. 

13Copyright Software AG 2001

SORTKEY - Sort-Key FunctionNatural System Functions



Example: 

   DEFINE DATA LOCAL 
     1 CUST VIEW OF CUSTOMERFILE 
       2 NAME 
       2 SORTNAME 
   END-DEFINE 
   ... 
   *LANGUAGE := 4 
   ... 
   REPEAT 
     INPUT NAME 
     SORTNAME := SORTKEY(NAME) 
     STORE CUST 
     END TRANSACTION 
     ... 
   END-REPEAT 
   ... 
   READ CUST BY SORTNAME 
     DISPLAY NAME 
   END-READ 
   ...

Assume that in the above example, at repeated executions of the INPUT statement, the following values are entered:
"Sanchez", "Sandino" und "Sancinto" . 

At the assignment of SORTKEY(NAME) to SORTNAME, the user exit NATUSK04 would be invoked. This user
exit would have to be programmed so that it first converts all lower-case letters to upper-case, and then converts the
character combination "CH" to "CX" - where X would correspond to the last character in the character set used, i.e.
hexadecimally H’FF’ (assuming that this last character is a non-printable character). 

The "original" names (NAME) as well as the converted names to be used for the desired sorting (SORTNAME) are
stored. To read the file, SORTNAME is used. The DISPLAY statement would then output the names in the correct
Spanish alphabetical order:

   Sancinto 
   Sanchez 
   Sandino

Copyright Software AG 200114

Natural System FunctionsSORTKEY - Sort-Key Function


	Natural System Functions
	Using Natural System Functions
	System Functions in SORT GIVE FUNCTIONS Statement
	Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
	Statement Referencing †r‡

	Alphabetical List of Natural System Functions
	AVER†r‡†field‡
	COUNT†r‡†field‡
	MAX†r‡†field‡
	MIN†r‡†field‡
	NAVER†r‡†field‡
	NCOUNT†r‡†field‡
	NMIN†r‡†field‡
	OLD†r‡†field‡
	SUM†r‡†field‡
	TOTAL†r‡†field‡
	System Functions Example 1:
	System Functions Example 2:
	System Functions Example 3:
	System Functions Example 4:


	Mathematical Functions
	
	Mathematical Functions Example:


	POS - Field Identification Function
	
	POS and *CURS-FIELD


	RET - Return Code Function
	SORTKEY - Sort-Key Function


